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Abstract— The accuracy knowledge of the load model parameters is very important in commercial software
used to foresee the dynamic response of the electric systems. Although there exist many methods about load
parameter estimation, convergence problems may arise during this process, which can became the identification
very difficult. Those problems are associated with the unavailable of solution region search (convergence region).
In order to mitigate those problems, in this paper is proposed a hybrid method based on mean-variance mapping
optimization and trajectory sensitivity. The combining of those approaches yields a robust algorithm which avoid
convergence problems and obtain the parameter rapidily. The chosen load model have an static and dynamic
parts to better represent the real load. In addition, the measurements for the application of the method was
obtained by simulation in a power system. One hundred cases were tested to verified the robustness of the
combined method regarding the initial parameter guess and to verified the speed of convergence. The results
show the correct and efficient estimation of the parameter of the model with the proposed method.
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Resumo— O conhecimento preciso dos parâmetros de modelos de carga é fundamental em softwares comerciais
utilizados para prever o comportamento dinâmico do sistema de potência. Embora tenham sido propostas muitos
métodos para este objetivo, em algumas situações estes métodos podem apresentar problemas de convergência
que pode inviabilizar a estimação destes parâmetros. Estes problemas estão associados à indisponibilidade da
faixa de busca da solução (região de convergência). A fim de minimizar estes problemas, neste trabalho é proposto
um método h́ıbrido baseado em otimização de mapeamento média-variância e em sensibilidade de trajetória. A
combinação destas duas abordagens fornece um algoritmo robusto que contorna os problemas de convergência e
obtém os parâmetros do modelo em forma rápida. O modelo de carga escolhido possui uma parte estática e uma
parte dinâmica a fim de melhor representar uma carga real. Além disso, as medidas para a aplicação do método
foi obtida por simulação em um sistema de potência. Foram avaliados 100 testes a fim de verificar a robustez da
metodologia em relação ao valor inicial dos parâmetros e velocidade de convergência. Os resultados mostram a
correta e eficiente estimação dos parâmetros do modelo com o método proposto.

Palavras-chave − Modelo de Carga, estimação de parâmetros, MVMO, sensibilidade de trajetória

1 Introdução

Prever o comportamento dinâmico do sistema
de energia elétrica através de simulações é muito
importante para uma correta e eficiente operação
do sistema de energia elétrica (SEE). Para este
objetivo todos os elementos do sistema devem ser
bem representados nos softwares comerciais uti-
lizados pelas empresas do setor elétrico (Anarede,
Digsilent, etap, etc). Dentre estes modelos, a
representação de modelos de cargas dinâmicas é
fundamental para estudos de estabilidade de ten-
são. Caso, os modelos não sejam bem represen-
tados nestes softwares, incompatibilidades entre
os resultados simulados e que se observa real-
mente no sistema podem surgir. Como referência
pode mencionar-se o estudo feito em (Henriques
et al., 2002), onde é indicado que as simulações
computacionais utilizando modelos de carga sim-
plificados (modelo de carga estáticas) foram inca-
pazes de reproduzir eventos reais (blecautes par-
ciais no estado do Rio de Janeiro).

Na comunidade cient́ıfica muitos métodos tem
sido propostos a fim de validar um modelo de
carga (Choi et al., 2006), (Maitra et al., 2006),

(IEEE, 1993), entre outros. Entretanto, um pro-
blema que não tem sido muito estudado no mo-
mento de estimar parâmetros de modelos de carga
é a robustez que o método deve ter em relação ao
valor inicial dos parâmetros. Considerando que
um modelo de carga é dif́ıcil de ser representado
por ser composto de diferentes elementos (carga
comercial, carga industrial, carga não linear, etc),
então a necessidade de ter um método que per-
mita identificar um modelo de carga satisfactori-
amente para as diferentes tipos de carga em cada
subestação faz-se necessário. Na prática proble-
mas de convergência podem ocorrer quando não
se dispõe de uma boa estimativa inicial dos valo-
res dos parâmetros.

Neste trabalho propõe-se um algoritmo com-
posto baseado em um método heuŕıstico denomi-
nado otimização de mapeamento média-variância
(MVMO, do inglês Mapping Mean-Variance op-
timization) (Erlich et al., 2010) juntamente com
um método não linear chamado método de sensi-
bilidade de trajetória (Cruz, 1972). Este método
combinado explora as vantagens das duas abor-
dagens, isto é a rapidez de convergência do al-
goritmo de sensibilidade de trajetória e robustez



em relação a incerteza nos valores iniciais dos
parâmetros que o método MVMO proporciona,
garantindo convergência aos valores verdadeiros.
A utilização deste método composto é uma apli-
cação inédita em modelos de carga e poder-se-ia
aplicar em outros sistemas dinâmicos sem perda
de generalidade.

A sequência dos caṕıtulos é descrita a seguir.
Na seção 2 são apresentados os método de esti-
mação baseado em MVMO e Sensibilidade de Tra-
jetória aplicada em sistemas dinâmicos. Na seção
3 é apresentada a modelagem matemática do mo-
delo de carga. Na seção 4 é mostrado o sistema de
potência teste utilizado para a obteção das medi-
das. Os resultados são apresentados na seção 5, e
na seção 6 apresentam-se as conclusões deste tra-
balho.

2 Método combinado de estimação de

parâmetros de sistemas dinâmicos

não-lineares

Considere o sistema

d

dt
x(t) = f(x(t), p, u(t)) (1)

y(t) = g(x(t), p, u(t)) (2)

onde xǫRn é o vetor de estado, yǫRm é o vetor de
sáıda, uǫRl é o vetor de entrada e pǫRk é o vetor
de parâmetros a ser estimado. As funções f e g

são não lineares, de classe C2 em relação a x, p e
u.

O processo de estimação de parâmetros é for-
mulado como um problema de otimização não-
linear para o qual é definida a função objetivo
J(p), que mede a proximidade entre as sáıdas do
sistema real medido (ymed) (obtidos das medidas
amostradas) e do modelo matemático (y) obtido
de (2) para um valor inicial do vetor de parâme-
tros p.

Min J(p) =
1

2

∫

τ

0

(ymed − y)To(ymed − y)dt, (3)

sendo To o peŕıodo de amostragem da medida.
A fim de ter um algoritmo robusto para es-

timar os parâmetros pela minimização do fun-
cional (3) foi escolhido um algoritmo heuŕıstico
combinado com um método não-linear. O método
heuŕıstico é utilizado para obter uma estimativa
inicial e o algoritmo não-liner para realizar o
ajuste fino dos parâmetros. Dentre os algoritmos
heuŕısticos existentes, o algorithmo MVMO foi
escolhido pelo excelente desempenho comparado
com os outros métodos algoritmo genéticos e
otimização de enxame de part́ıculas (Rueda and
Erlich, 2013). Dentre os métodos não-lineares foi
escolhido o método de sensibilidade de trajetória
devido a rápida convergência que ele possui. Por-
tanto, o método combinado aproveita as melhores

caracteŕısticas dos dois métodos independentes,
isto é robustez em relação a valor inicial dos parâ-
metros do método MVMO e a rápida convergência
do método de Sensibilidade de trajetória.

2.1 Otimização de Mapeamento Média Variân-
cia

O método de Otimização Média-Variância
pode ser utilizado para ajustar os parâmetros do
modelo (2) a fim de minimizar (3), denominada
função de aptidão (Erlich et al., 2010). Os passos
do algoritmo MVMO são:

a Inicialização: Define-se a região de busca pela
imposição de limites nos parâmetros (elemen-
tos) pmax e pmin. Define-se o número de in-
div́ıduos (vetor de parâmetros determinados
aleatoriamente) que define o tamanho da pop-
ulação;

b Avaliação da função objetivo (função aptidão):
Para cada individuo da população avalia-se a
função objetivo e classifica-se a população de
acordo com este valor;

c Teste de Finalização: Se a função objetivo do
melhor indiv́ıduo (aquele que tiver menor
função objetivo) for inferior a uma tolerân-
cia predefinida, pare. Caso contrário vá para
o próximo passo;

d Nova Geração de indiv́ıduos: Determine a mé-
dia e a variância da cada coluna da população
e determina-se um novo indiv́ıduo a partir do
melhor indiv́ıduo. As alterações do novo in-
div́ıduo são função da média e variânça da
população;

e Reclassificação: Incluindo o novo indiv́ıduo, é
feito uma nova classificação onde o pior indi-
v́ıduo é descartado. Voltar ao item b.

Maiores detalhes do método pode ser encontrado
em (Erlich et al., 2010).

2.2 Algoritmo de sensibilidade de trajetória

O problema de otimização (3) pode ser re-
solvido calculando-se a derivada parcial de J(p)
em relação a seus parâmetros e igualando-se esta
expressão a zero

∂J(p)

∂p
∼=

∫

τ

0

∂y

∂p

T

(ymed − y)dt = 0 (4)

O problema de otimização foi transformado
em encontrar as raizes do sistema (4) no qual
pode-se usar o método de Newton-Raphson. Na
i-ésima iteração os parâmetros são ajutados por:

pk+1 = pk + Γ(pk)−1 ∂J(p
k)

∂p
(5)



A matriz Γ em (5) é denominada Jacobina
associada à (4), e pode ser calculada derivando-se
(4) em função do vetor de parâmetros

Quando as medidas são amostradas em inter-
valos de tempo discreto, as integrais acima são
substitúıdas por somatórios. Para maiores deta-
lhes veja (Cruz, 1972) and (Cari, 2009).

3 Modelagem de Cargas Dinâmicas

O modelo de carga escolhido é composto de
uma parte dinâmica e uma parte estática. A parte
dinâmica é representada por um motor de indução
e a parte estática por uma admitância em paralelo.
As equações diferenciais que descrevem o compor-
tamento dinâmico da carga são (Choi et al., 2006):

dE′

dt
=

1

T ′
o

[

−
X

X ′
E′ +

X −X ′

X ′
VT · cos(δ)

]

(6)

dδ

dt
= ω − ωs −

1

T ′
o

X −X ′

X ′
·
VT · sin(δ)

T ′
o
· E′

(7)

dω

dt
=

1

M

[

VT · E′
· sen(δ)

X
− Tm

]

(8)

Pe = Gs · V
2
T
− VT ·

VT · E′

X ′
· sen(δ) (9)

Qe = Bs · V
2
T + VT ·

VT − E′
· cos(δ)

X ′
(10)

onde E′ é a magnitude de tensão transitória, δ

é o ângulo da tensão, ω é a velocidade do ro-
tor [rad/seg], X ′ é a reatância transitória, T ′

o
é

a constante de tempo em circuito aberto, M é
o momento de inércia, Tm é o torque do motor
equivalente, Gs e Bs é a condutância e suceptân-
cia da admitância equivalente, VT é a tensão nos
terminais da máquina e Pe e Qe são a potência
ativa e reativa, respectivamente.

O vetor de estado deste modelo é
x = [E′, δ, ω]T , o vetor de parâmetro é
p = [M,T ′

o
, X,X ′, Tm, Gs, Bs]

T , a entrada
do modelo é u = [VT ] e a sáıda do modelo é
y = [Pe, Qe]

T .

4 Sistema Elétrico de Potência

Os dados para aplicação do método de esti-
mação foram gerados a partir de um sistema teste
implementado no Matlab 7.0 (Kundur, 1994). O
sistema de potência teste é constitúıdo por um
gerador equivalente de uma planta (4x555 MVA),
24 kV e 60 Hz que fornece potência a um bar-
ramento infinito (equivalente de um sistema de
potência) através de duas linhas de transmissão
como mostra a figura 1.

Os valores das impedâncias de linha, do trans-
formador, das potência e tensões estão dados em
valores por unidade (pu). A potência base é 2200
MVA, as tensões base no lado de baixa e alta ten-
são são 24 kV e 220 kV respectivamente.

Figura 1: Sistema elétrico de potência para obtenção das
medidas.

Foi aplicado uma perturbação no sistema
teste para obter a resposta dinâmica do SEP.
A perturbação consiste em um curto-circuito
trifásico em um dos terminais da linha de trans-
missão L2. A falta é eliminada pela atuação dos
dispositivos de proteção que isola a linha em falta
em t = 0,07 s. Foram amostradas as tensões e as
correntes nas três fases e a partir dáı foi calculado
a potência ativa e reativa. A tensão terminal VT

foi utilizada como entrada e as potência ativa e
reativa (Pe e Qe, respectivamente) como sáıda do
sistema real.

Para outros tipos de perturbações tais como
faltas monofásicas, bifásicas, desligamento de lin-
has, etc, o procedimento para obter as medidas é
similar só que, nesse caso, é necessário, primeiro
obter as componentes de sequencia positiva das
tensões e correntes.

5 Resultados da Estimação

O método composto baseado em MVMO e
sensibilidade de trajetória foi testado para deter-
minar os parâmetros do modelo de carga dinâmico
apresentado na seção 3

As condições iniciais para as va-
riáveis de estado foram [E′

o
, δo, ωo] =

[1.0750,−0.3689, 364.381] e os valores reais
dos parâmetros do vetor p para o sis-
tema real foram [M,To, X,X ′, Tm, Gs, Bs] =
[0.0139, 0.0963, 0.2089, 0.0446, 8.6157, 4.1358, 2.8004].
Estes valores foram obtidos de (Choi et al., 2006).

5.1 Fase I: Estimativa inicial inteligente

Seguindo o algoritmo apresentado na seção
2, uma estimativa inteligente inicial é obtida uti-
lizando o método heuŕıstico MVMO e um resul-
tado mais refinado é obtido aplicando o método de
sensibilidade de trajetória. Para aplicar o método
MVMO é necessário limitar a busca impondo li-
mites máximos e mı́nimos nos parâmetros descon-
hecidos. Considera-se uma incerteza ±30% em
todos os parâmetros em relação aos valores ver-
dadeiros para o começo do processo. Entende-se
que um pré-conhecimento da faixa onde se encon-
tra os parâmetros é necessária para uma correta
identificação. Esta informação pode ser obtida a
partir dos parâmetros de modelos de carga con-



hecidas de outras subestações, ou através da ex-
periência do engenheiro. Maiores incertezas tam-
bém podem ser adotadas, entretanto isso aumen-
tará o tempo de estimação. Os seguintes valo-
res foram utilizados para as constantes do método
MVMO: tol1 = 0, 5 (critério de parada); tamanho
da população = 50; número de elementos =7
(igual ao número de parâmetros). Uma popu-
lação inicial foi aleatoriamente escolhida dentro
dos limites dos parâmetros e o algoritmo MVMO
foi utilizada até que a função objetivo satisfaça a
condição de ser inferior a tol1.

Os resultados mostram que para 100 casos tes-
tados o método MVMO atingiu a função objetivo
em média 6s em um computador com processador
de 2,9 GHz.

5.2 Fase II: Estimativa Refinada

A partir da estimativa inicial MVMO o
método de sensibilidade de trajetória foi aplicado
para encontrar os parâmetros do modelo de carga
com valores mais precisos. O critério de parada
para o uso do método de sensibilidade de tra-
jetória foi que a função objetivo seja inferior a uma
tolerância tol2 = 0, 001s.

O método conseguiu estimar os valores ver-
dadeiros em média em 1,1 segundos em um com-
putador com processador de 2,9GHz. O tempo
total de todo o processo de estimação ficou em 7,1
s.

O método combinado de MVMO e Sensibili-
dade de Trajetória garantiu convergência em 92%
dos casos testados.

Nas figuras 2-3 são comparadas a potência
ativa e reativa, respectivamente, do sistema Real
(Medida Real), do modelo matemático com valo-
res iniciais aleatórios (modelo inicial), após a fase
I - após a aplicação do método MVMO (modelo
MVMO) - e após a fase II - após a aplicação do
método de sensibilidade de trajetória (modelo Fi-
nal). Como pode observar-se as curvas ficaram
próximas o que indica a convergência dos parâ-
metros aos valores verdadeiros.
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Figura 2: Comparando a potência ativa antes de depois
da aplicação do método).

0 0.2 0.4 0.6 0.8 1
−10

0

10

20

30

40

tempo (s)

P
ot

ên
ci

a 
R

ea
tiv

a,
 Q

e 
(p

u)

 

 

Medida Real
Modelo inicial
Modelo MVMO
Modelo Sen Traj

Figura 3: Comparando a potência reativa antes de depois
da aplicação do método).

6 Conclusões

Neste trabalho apresentado um método
h́ıbrido baseado em otimização mapeamento
media-variância (MVMO) e método de sensibili-
dade de trajetória para estimação de parâmetros
de modelos de carga. O método MVMO é uti-
lizado para obter uma estimativa inicial inteligente
dos parâmetros e o método de sensibilidade de tra-
jetória é utilizado para refinar os valores obtidos.
Foi avaliado o desempenho do algoritmo proposto
para 100 casos variando a estimativa inicial dos
parâmetros ±30% de seus valores nominais. Os
resultados mostram que o método conseguiu con-
vergência aos valores verdadeiros em 92% dos ca-
sos testados com um tempo médio de 7,1 s.

A validação do modelo de carga usando me-
didas reais será tema de trabalhos futuros.
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